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Abstract. We propose a novel method for non-rigid chest CT registra-
tion based on a new, adaptive local measure which evaluates gradient
orientation similarity, and an adaptive pixel sampling scheme. A com-
putationally efficient estimation of gradient orientations is also proposed
based on voxel neighborhood rigidity. We have applied our method to
the Evaluation of Methods for Pulmonary Image Registration 2010 (EM-
PIRE10) Challenge3 datset, where we have shown good image correspon-
dence results in terms of lung boundaries, fissures and expert selected
landmarks.

1 Introduction

In this work, we propose a registration framework which embeds a new localized
similarity metric expressed as an orientation similarity measure based on a local
approximation to Mutual Information (MI). Other local MI metrics have been
devised [1, 2], however, our metric is adaptive, in that it can loosen or tighten its
constraints depending on the modalities being registered and the scale at which
the images are being registered. We also propose an adaptive multi-scale pixel
sampling scheme and a computationally efficient method for estimating gradient
orientations.

Even though our method was originally developed with the context of brain
MRI/US deformable registration in mind[3], we consider it important to study
the advantages and disadvantages of our approach in different registration con-
texts. In this work, we evaluate the performance of our method in the context
of chest Computer Tomography (CT) deformable registration. The challenge
of such context is considerably different and lies in obtaining a transformation
that accurately matches lung boundaries, fissures and bronchioles in a physi-
cally plausible fashion. Even though the registration is performed on the same
modality, the scans are from different time points and the quality and dynamic
intensity range of the scans can be considerably different. Hence, it remains
of critical importance to implement a registration method robust to different
intensity responses and significant levels of noise.

3 http://empire10.isi.uu.nl/



2 Method

2.1 Local Mutual Information - Previous Work

In [1], the authors developed a local similarity metric based on the analytical
limit of MI as the window of observation approaches the voxel size. The expres-
sion for local MI (LMI) is obtained by modeling both images with a first-order
Taylor expansion and is a monotonically decreasing function of the angle, θ,
between the gradient orientations,

LMI(θ) = Cd + log2 | sin(θ)| (1)

where Cd is a constant that depends on the dimension of the image.
It is not possible to build an energy function by simply summing Eqn. 1 over

a set of points in the image, since an extremum would appear whenever any
of the points has a minimal inner angle. To circumvent this issue, the authors
simplify the expression to,

LMI2(θ) =
1

2
cos2(θ) (2)

which has a smoother shape and whose energy function exhibits an extremum
only when there is a collective coherence in terms of orientation similarity.

In related work [2], the authors preserve the dynamics of the original expres-
sion and eliminate the singularity by including an ε factor,

LMI3(θ) = log2 (ε+ | sin(θ)|) (3)

The two localized metrics have significantly different coherence-selectivity
trade-offs. The metric expressed by Eqn. 2 represents a coherent metric in the
sense that it is maximal when a majority of points show some degree of im-
age correspondence. In contrast, a selective metric, such as Eqn. 3, has stricter
correspondence constraints and therefore exhibits an extremum as soon as a
few points comply with such constraints. A measure that favors coherence will
tend to be smoother but less accurate because it will effectively average over all
sampled pixels.

2.2 Adaptive Local Mutual Information

Our work builds on previous work [1, 2] in which MI is locally approximated by
a metric appropriately derived from the energy function. We propose an adap-
tive local orientation-based similar metric (ALMI) that addresses the coherence-
selectivity trade-off directly as follows:

ALMI(θ;K, θc) = 2− 1

1 + e−K(θ−θc)
− 1

1 + e−K(π−θ−θc)
(4)

The selectivity of this smooth sigmoid-based function is adaptable by varying
the curvature, K, and cutoff angle, θc. The cutoff angle identifies the angle at
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Fig. 1: The top row shows the two previous proposed localized measures and our
proposed measure as a function of θ. The bottom row shows their respective
derivatives.

which the localized metric decays to half its maximum value. The curvature,
K, defines the gradient of the curve. For example, a high curvature value will
characterise a steep slope with a short span.

Figure 1 illustrates how the two previously proposed measures compare to
various configurations of our proposed expression. An important advantage of
ALMI is that it saturates smoothly to a maximum as θ → {0, π}. This property
allows the energy function to reach a stable state as the optimizer approaches
an extremum.

Since all the experiments in this work are performed with CT images of
relatively high quality which preserve the structures of interest, we set the pa-
rameters of ALMI to (K = 15, θc = π

9 ), which is a relatively selective profile.

2.3 Gradient Orientation Approximation

A metric based on gradient orientations incurs a computational cost related
to evaluating the gradient at each point of interest. We propose a simplifying
implementation in which the gradients are computed only once for both the
fixed and the moving image. Subsequent gradient orientations of the transformed
moving image are estimated from the initial orientations.

In order to achieve non-rigid registrations, we make the simplifying assump-
tion that the transformation in the voxel neighborhood can be well approximated
by a locally rigid transformation. Hence, we can estimate the gradient orienta-
tion of a point by multiplying the gradient orientation of the point prior to
transformation with an estimated rotation matrix as follows,

θ(x) = 6 (∇If (x),∇Im(T (x)))

≈ 6 (∇If (x), R · ∇Im(x′ = T (x)))



Such a scheme eliminates the effect of intensity-interpolation artifacts and
minimizes the expense of using high quality gradient operators.

2.4 Pre-Processing

Our method makes use of pre-segmented lung masks. Pixels within the lung
boundaries have a value of 1, while pixels outside the lung boundaries have a
value of 0. Since our local similarity measure tends to match borders and blobs,
it is necessary to dilate the initial lung masks by a couple of pixels to provide
sufficient image support for the lung boundaries.

Dilation is performed by blurring the initial masks with a Gaussian kernel
with a standard deviation equal to the size of the voxels and then selecting the
voxels with intensity above a threshold value of 0.01. The dilated lung masks
are then used as initial sampling masks for the fixed and moving image.

Additionally, the initial volumes are down-sampled by a factor of two to
reduce the computational load. Down-sampling is performed by convolving the
original image with a Gaussian kernel with a standard deviation equal to twice
the pixel spacing and then resampling the image with a corresponding pixel grid
of increased pixel spacing. The down-sampled volumes are then registered in a
multi-scale framework, see Section 2.5. The result of this registration is then
used as an initial point for a second registration which makes use of the full
resolution volumes and is only performed at the original image level (i.e. no
image pyramid). The first registration stage represents most of the processing
time and is expected to account for most of the final deformation. The second
registration stage has a reduced number of iterations and is mainly expected to
refine the final deformation.

2.5 Adaptive Sampling

In addition to the metric proposed above, we propose an adaptive multiscale
pixel selection scheme for the first registration stage. Rather than adopting a
standard low-pass image pyramid [4] in which the images are both blurred and
down-sampled at each level, we use a smoothing image pyramid in which only
the scale of Gaussian blurring is increased at each level. Figure 2 illustrates
how the gradient orientations change with different blurring scales. As the scale
of diffusion is increased, the spatial support of a structure (i.e. the extent of
image area where the gradient orientations accurately indicate the orientation
of a structure of reference) tends to increase proportionately to the ratio of the
current scale to the previous scale.

Performance gains can be attained by focusing on a cleverly selected subset
of voxels in the images. Our conjecture is that the gradient magnitude is a valid
indicator of the reliability of an estimated gradient orientation, and therefore
high gradient voxels are selected. Furthermore, pixels with low gradients typically
appear in homogeneous regions and thus do not have structure to drive the local
non-linear registration. Hence, we adapt the sampling mask, M(x), in relation



Fig. 2: Gradient Orientations (short blue lines) at different blurring scales, σ ∈
0, 1, 2, 4

to the current Gaussian scale, as follows,

M(x) =

{
1 if |∇If (x)| > g(pσ)
0 otherwise.

(5)

where g(p) is the threshold value that captures the top p percentile of the fixed
image gradient magnitude and pσ satisfies the inequality pσn+1 > pσn

.

In this work, we chose the percentile for each scale based on a qualitative
assessment of how well the relevant features are captured. In other words, at the
finest scale we search for the percentile that best captures the lung boundaries,
major fissures and bronchioles. For coarser scales the percentile is increased to
account for the spatial support related to such features. Table 1 lists some of the
relevant parameters of the registration method.

2.6 Optimization

Our proposed method was implemented by extending the Elastix Toolbox [5]. We
chose a BSpline transformation to characterize the deformation with a uniform
grid of knots separated by a spacing of 8mm x 8mm x 8mm. The grid of knots
is also adapted in relation to the image pyramid level. In other words, there are
fewer knots at coarser image levels. Such a scheme reduces the computational
load since the number of transformation parameters is greatly reduced. The
schedule for the grid of knots is specified in Table 1. It is of interest to note
that no regularization was embedded in our method. In other words, the energy
function does not incorporate a penalty for non-regular deformations.

The optimization is performed by a gradient decent optimizer with an adap-
tive gain4 which operates until reaching a specified number of iterations. Fur-
thermore, instead of using all the pixels found in the pixel selection mask, a
subset of the pixels is randomly chosen5 at every iteration of the optimizer,
thereby further reducing the computational load while preserving robustness to
local minima.

4 Identified in Elastix under the name of AdaptiveStochasticGradientDescent
5 Identified in Elastix under the name of RandomSparseMask



Stage Level Gaussian Blurring Sampling Percentile BSpline Grid
Std Deviation (in mm) pσ Downsampling Factor

1 6 32 x 32 x 32 100 % 32
5 16 x 16 x 16 100 % 8
4 8 x 8 x 8 100 % 4
3 4 x 4 x 4 80 % 2
2 2 x 2 x 2 60 % 1
1 1 x 1 x 1 40 % 1

2 0 1 x 1 x1 40 % 1

Table 1: Relevant parameters of multi-scale registration. The image pyramid is
processed in decreasing order of Gaussian blurring. Hence, level 6 is processed
first, and level 0 is processed last. The pixel selection percentile indicates the
top percent of high gradient magnitude pixels selected from the fixed image.
The Bspline grid downsampling factor effectively defines the grid of knots at
each level. For example, a downsampling factor of 2 and a final grid spacing of
8 x 8 x 8, results in a grid spacing of 16 x 16 x 16.

3 Results and Discussion

We tested our method with the 20 scan pairs provided by the EMPIRE10 Chal-
lenge, a transparent approach for comparing multiple methods on a common
dataset. Table 2 shows the detailed results of our method for each scan pair and
each scoring criteria. For details on the scoring criteria, the reader is invited to
refer to [6]. For a comprehensive list of rankings and scores, the reader is invited
to visit the EMPIRE10 website6.

In terms of scores, our best results were for the landmark criteria (like bron-
chioles) where our method shows an average localization error of 1.10 mm and
an average ranking of 10.37 (of 34). Our top 10 best registration results in this
category show an average error of less than 0.72 mm, which corresponds to one
pixel or less. In our case, we believe that these results are due to both the nature
of the similarity metric employed in our framework, and the adaptive sampling
scheme proposed. The sampling scheme allows the algorithm to focus on the fea-
tures of interest, whereas the similarity metric provides robustness to intensity
response variations across images by matching gradient orientations, as opposed
to maximizing some notion of intensity correspondence.

The registration error for landmarks is evaluated as the distance to whichever
observer’s point is closest. Furthermore, the landmark points chosen by the ob-
servers must be within 3 mm to be considered valid. Hence, the scoring critera
evaluates how well the landmark is registered to any of the observers’ points.
The justification is that all observers are correct as long as they exist within 3
mm of each other and therefore represent various “true” solutions. Hence, the
problem is assumed to be ill-posed with multiple solutions, potentially more than

6 http://empire10.isi.uu.nl/mainResults.php



Lung Boundaries Fissures Landmarks Singularities

Scan
Pair

Score Rank Score Rank Score Rank Score Rank

01 0.10 22.00 0.37 15.00 1.92 8.00 0.09 29.00

02 0.00 11.00 0.00 15.00 0.33 2.00 0.00 12.50

03 0.00 25.00 0.00 12.50 0.32 3.00 0.00 12.00

04 0.00 22.00 0.00 16.50 1.39 17.00 0.00 14.00

05 0.00 28.00 0.00 16.00 0.00 5.50 0.00 31.00

06 0.00 16.00 0.00 25.00 0.34 12.00 0.00 28.00

07 0.28 24.00 2.51 22.00 1.98 10.00 0.18 29.00

08 0.02 22.00 0.39 22.00 0.71 6.00 0.07 30.00

09 0.00 14.00 0.05 28.00 0.49 1.00 0.00 28.00

10 0.01 21.00 0.00 15.00 1.53 11.00 0.00 13.50

11 0.21 23.00 0.00 5.00 0.63 2.00 0.09 28.00

12 0.00 10.00 0.00 13.50 0.01 8.00 0.00 14.50

13 0.10 33.00 0.27 30.00 1.38 31.00 0.16 31.00

14 0.40 25.00 3.23 15.00 3.15 15.00 0.04 27.00

15 0.00 29.00 0.00 26.00 0.61 4.00 0.00 27.00

16 0.33 34.00 0.92 28.00 2.28 30.00 0.55 32.00

17 0.08 34.00 0.03 6.00 1.13 21.00 0.28 33.00

18 0.16 23.00 0.54 7.00 1.89 8.00 0.16 28.00

19 0.00 14.00 0.00 26.00 0.46 6.00 0.00 14.50

20 0.07 22.00 2.50 13.00 1.40 7.00 0.22 29.00

Avg 0.09 22.60 0.54 17.82 1.10 10.37 0.09 24.55

Average Ranking Overall 18.83

Final Placement 22

Table 2: Results for each scan pair, per category and overall. Rankings and final
placement are from a total of 34 competing algorithms.

three. We argue that, instead of evaluating the distance to the closest candidate
point, it would be more reasonable to evaluate the landmark registration error
based on some notion of agreement between observers (e.g. a weighted distance
from the landmark identified by each observer or explicitly cross-validating land-
marks with multiple observers) or to take the inherent ill-posedness into account.
Figure 3 illustrates a potential worst-case scencario where two considerably dif-
ferent registration results (shown in red) lead to the same localization error even
though one shows a more satisfactory agreement with all the observers.

As in any other registration framework, it is necessary for coarse scale struc-
tures like lung boundaries to be accurately resolved so that fine scale structures
like bronchioles can be pulled to their corresponding landmarks. Our proposed
method shows good results in terms of lung boundary matching, with an average
percentage error of 0.09, meaning 0.09% of tested pixels near the lung bound-



Fig. 3: Landmark Localization Error. Three observers identify different landmark
localizations (green circles) with a maximum allowed distance between them of
3 mm. One method registers the landmark to the center of the triangle (red
circle), while the other registers the landmark considerably farther from all but
one observer. However, both methods share the same localization error, since
the distance to the closest candidate point is the same (1.732 mm).

aries were penalized (unregistered). Furthermore, the top four scan pairs show a
near-perfect registration with a percentage error less than 1e-5. In other words,
less than 0.00001% of the lung boundary pixels suffered a penalization. It is in-
teresting to note that most of the participating methods had very competitive
lung boundary registration results. For example, even though in Case 16 our
method has a percentage error less than 1e-5, it is actually ranked 16th.

Nonetheless, for some of the scan pairs we had lower scores for the lung
boundary tests, which can be explained by mainly two factors. First, we observed
that lung boundary mismatches tend to occur in the bottom section of the
lung. In particular, the method seems to have difficulty in accurately resolving
“corner” regions of high curvature such as in the case shown in Figure 4. In
addition, we found that such behaviour typically occurs only when the corner is
found in the fixed image and the corresponding region in the moving image has
to compress into the corner, as can be seen in Figure 4.

The inverse case, where a tight corner in the moving image has to expand
towards a lower curvature region in the fixed image, tends to be well resolved,
as shown in Figure 5. We also found that the cases where the lung boundaries
have considerable mismatch also had a relatively higher average landmark error.
Therefore, improving the registration of such lung boundary regions will likely
improve the landmark registration results. We believe a considerable extent of
those challenges can be addressed by improving the symmetry of the pixel sam-
pling method, that is, by selecting pixels corresponding to features of the fixed
image as well as pixels corresponding to moving image features.

We noticed that cases 16 and 17 showed particularly poor results. Both cases
are characterized by considerably coarse pixel spacings: Case 16 has a pixel grid



of 0.97656 mm x 0.97656 mm x 2.5 mm and Case 17 has a grid of 0.97656 mm x
0.97656 mm x 2.0 mm. Larger, non-isotropic voxel pixels sizes are clearly detri-
mental to our method. In particular, since most of the processing is performed
on the down-sampled volumes, the initial pixel grids for cases 16 and 17 are
extremely coarse, leading to a degradation of the gradient orientation approx-
imation. To avoid such losses in performance, it would be of interest to either
avoid the down-sampling stage entirely and perform the multi-scale registration
starting with the original volumes, or to use a fixed common voxel size for the
down-sampling stage of all scan pairs.

Finally, in our implementation, we chose to avoid imposing additional regu-
larization constraints in our energy function. This led to penalties in terms of
deformation singularities, with an average ranking of 24.52 and an average score
of 0.09

Future work will explore using the penalty term proposed in [7] which pro-
vides an excellent option for this context since it addresses the scoring criteria
directly and also penalizes deformations which are locally non-rigid, thereby sup-
porting the assumptions made for our approximation of gradient orientations.

(a) Fixed (b) Moving (c) Deformed Moving

Fig. 4: Example of a Mismatch in Bottom Lung Boundaries. Notice how the
bottom-left corner of the lung boundary does not show good correspondence in
images (a) and (c)

4 Conclusions

We have presented a new method for non-rigid registration of CT chest scans
using a similarity metric based on gradient orientations and an adaptive pixel
sampling scheme. We have shown good results in terms of lung boundary, land-
mark (i.e. bronchioles) and fissure matching. In particular, we have shown high
landmark accuracy, comparable or better than the pixel size. We believe that
our method can be further improved by adopting a symmetric pixel sampling
method. Finally, incorporating a regularization term can serve to both enforce



(a) Fixed (b) Moving (c) Deformed Moving

Fig. 5: Example of a Good Match in Lung Boundaries. The moving image, (b),
exposes a high curvature corner that is deformed to match the respective fixed
image region with lower curvature.

the assumptions behind our approach to gradient orientation approximation and
to favor locally rigid deformations.
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